CPRE 465 FINAL PROJECT

Harith Mohd., Akash Pradhan, Joyal Babu

Akash Pradhan — Streamlining synthesis process
M. Harith Arsyad — Verilog Code, Optimizations, and Synthesis

Joyal Babu — Report writing

5% December 2022

1. Problem Description

The problem that the USDA is facing is that they want to investigate the relationship between
the temperature of a plant and the protein level present in the plant. In order to do this, they
need to monitor the temperature of the plants remotely, using temperature sensors and loT
motes. Our task is to design a circuit that can solve this problem for the USDA, allowing them to
monitor the temperature of the plants and investigate the relationship between temperature
and protein levels. This will require a combination of digital circuit design and algorithm design
in order to implement a solution that meets the USDA's requirements. We will

1. Start by using an loT mote to collect temperature readings from the temperature
sensor. The mote should be able to communicate with the temperature sensor and
collect the readings at regular intervals.

2. Next, design a circuit that can receive the temperature readings from the mote and
store them in a memory device, such as a shift register or a FIFO buffer. The circuit
should be able to store a large number of readings, so that we can calculate the average
and standard deviation over a long period of time.

3. Once the readings are stored in the memory device, we can use a digital circuit to
calculate the average and standard deviation of the readings. This can be done by
implementing a simple algorithm that adds up all the readings and divides the result by
the number of readings to calculate the average. The standard deviation can be
calculated by taking the square root of the sum of the squared differences between
each reading and the average, divided by the number of readings.

4. Finally, the circuit should be able to display the average and standard deviation of the
temperature readings on a display device, such as an LCD screen. This will allow the
USDA to monitor the temperature of the plants and investigate the relationship
between temperature and protein levels.

In detail regarding the design of the digital circuit the objective is to find the moving average
and the moving standard deviation of the last fourteen readings from a temperature sensor.

Moving average is a calculation to analyze the data points by creating a series of averages of
different subsets of the full data set. Here we are taking the temperature value the sensor gives
as the average temperatures the sensor detects and we are calculating the average
temperature of the last 14 inputs from the temperature sensor. The temperature average is
given by

-y

Tavg n-1 =1 Ti

The standard deviation can be written as

0=

1 2 1 ",
E:Z{Tf—Tavg) =V E(:Z T,

avg?

hence since we want the moving average for the last 14 temperature readings if n,14 we take
the average and standard deviation of all n readings.

The design specification given are

RESET =—> —> SAMPLE
Moving Average
MODE —> and —> DONE
TN <2 Standard Derivation 12, , AyG/sD
Clrcuit
CLK =——> T —

When RESET is set to 1 all previous temperature readings are forgotten. The temperatures are
taken one at a time and the circuit takes in new temperature when the SAMPLE is set to 1. The
circuit then takes in one new temperature reading TN and the mode of operation MODE at the

next clock edge. The next few clock cycles are used to calculate the moving average and the
moving standard deviation. After the that the circuit will change DONE to 1 and output will be
given which can the moving average(if MODE =0) or the moving standard deviation (if MODE
=1) given as AVG/SD.

Square root is not easy to be implemented via hardware hence we use the Babylonian method.

o Can't Clockgate

) Sum * A3) .
T,,3= 7 sum 2 " 1 Verilog removes dicimil 50 add a2 b by

decmls of 0.8 or above b nagt ,'.h"w

S‘IA‘.‘ D.';..i“

o= oy

’ 2
. ,’.‘ sva_8q -(7'\ S\w\)
% VA xsum_sg~sum?

= ' n-s:-n_g! - Sum = _T__ ;

nl

H .' a (ﬂltun.s,-hmx) n
an & +
6

s
'
¥ia
—~
L}
*
Q\‘<
~

% 2
€ a Sum-_$3 =~ Sum]

. | [
= &“ + v\.sm-_si,'-hm\1 &t 2 é

a
)
al

2 L2 - 2 A 2
6 + nSun-st-Sunl oo T 4'(6 n)

26n 6n* <<

2. Brief Description of Team Approach to this Problem

In this project we needed to preserve previous values of temperatures and their running
averages. We started with a big memory of registers for storing input temperatures and used
accumulator for calculating the sum of temperatures and square of temperatures. These used
a lot of adders and multipliers. Then we did division to get the averages and square root
using the Netwon-Raphson approximation method. This gave us uneven number of cycles for

calculation of running averages and standard deviation. The problem was that we were doing
multiple things in sequential manner without maintaining proper cycle accuracy and that is
when we changed our design. Next we started with scratch design on paper and made a flow
diagram where we found what could be optimized in the process to calculate the required
things. We were able to save on multiplication and division hardware by proper insertion of
buffers and using the techniques learned in previous labs. We had the following diagrams in
our rough sketches which shows our design

l\\u“ip.icr instances - Sum X sum @
TirT, @ o|Ju"_ih loll;;#,.‘,\ @
L) n A (sum-St)(‘D ‘J
ntn
A k)
Lsa' ©
A A t
Lyexen @
sel,
T
ldest-in -
] ‘v\ . > S -'\-St
scl,
T
oldestoin
sua\.at

Schematics and layouts after optimization :

& Applications Places Innovus(T) Implementation System 211 - homeakashiapleed65iFinal_p fun_dir - NOA. Modute — co. Mn03%e & €6 0
Innovus(TM) Implementation System 2L.1 - lhome/akashkap/eed65iFinal. project/par/run_dir - NOAA.Module ~ co2046-03.ece astate.edu -0 X
Fle View Edt Parttion Foorpan Pomer Place ECO Clock Route Timing Verfy Tools Windows Flows Help \ tadence

~ 5 A == s ~ b - a

VETEITA » \ y \ & A1 M@
'-""“[' E-\"\"\W‘\'; .i:';:ﬂx‘- EabdUbhad 006

DCERRRRILE 4= gy

-1

-8

séet)| Instance)

¥ Aopend

Al Colors

2 favorite
Vioktion
= Instance
B 9Type

Block

(o1
Physica
0
Areal0
Blck Bor
o Function
v Status

Floorplan

& Overlay

B Track

B -Net

& Route

Elayer
Pof)
(0f0)
M)
VAT(T)
M22)
VAZZ)
M3B)
VA33)
M4)
M5(3)

- VAYS)

& Miscellaneous

& Adsptive
v Detall !

oords 0,0 radis 150

(=

)

<
<

|

o i< 1= (= 1= 1= < < < < < < < < < < < <
N SR R O R T TN N SR TR TR TR T

< |= < < |

N T R S R e O i R o T TN TN TR T TR TN Y

KKK KK K< K K < < < <

1= 1
<

Goto

electsinge object. ShifteClick to defselect multiple objects

;QJ (Clck

304.22300, 86.55450

Timing, Area and Power Reports (by RTL Compiler and

Innovus)

Before Optimization After Optimization
Clock Period(ns) 4.2 4.2
Slack(ns) -3.923 0
Area(um’) 62051.760 11157.48
Average power 12.761 2.372
consumption(mW)

Before optimization

After optimization

_consumption(mW)

Clock period(ns) 4.2 4.2
Slack(ns) -3.923 0
Area(um?) 62051.760 11157.48
Average power 4.30942 2.372

Average Energy consumption
per temperature reading(W)

33.28*%107-12

4.9831*107-12

Latency 4 4
Throughput One every 8.12ns, 0.476*1079, one every 2.1 ns
0.123*1079

4. Verilog Codes of design

This is the final code after optimization:

module NOAA_Module (

input CLK,
input RESET,
input MODE,

input [11:0] TN,

output SAMPLE, output

DONE, output reg [11:0]

AVG_SD);

//Flag wires and regs

wire newData_flagl; //flags for every new data into the process. Waits for the process to be
done first then flags for the next set to be processed

reg newData_flag2, newData_flag3, newData_flag4; //registers to delay newData flagto 2, 3, ...
cycles

//Clock Components

wire newData_clk1, newData_clk2, newData_clk3; //clocks for every new input to the process.
Each clock line adds 1 cycle delay after every new input wire t_avg_clk2; //clock-gating clock
for MOVING AVERAGE. 2 cycles after new input to process

wire sd_clk1, sd_clk2, sd_clk3, sd_clk4; //clock-gating clock for STANDARD DEVIATION. 1, 2, 3,
... cycle delay wire mult_clk;

//Multiplier Wires and select wire [31:0]

multl_wl, multl_w2; wire [31:0]

mult2_w1, mult2_w2; wire [39:0]

multl w3, mult2_w3, mult3_w3;

reg [1:0] mult_sel;

//Division Wires wire [31:0]
div_wl, div_w2; wire

[31:0] div_result;

//Continuos Process Components
reg [15:0] sum; reg [31:0]
sum_sq; reg [31:0] Ti_sq; reg
[31:0] OD_sq; wire [11:0]

oldest_data; reg mode_delay,

mode_delay2; wire [3:0]

counter_n;

//MOVING AVERAGE Components

wire [11:0] t_avg;

//STANDARD DEVIATION Components
reg [31:0] sd_n_sq, sd_n, sum_2;
reg [39:0] sum_sq_n; wire [15:0]

sd_result;

reg [15:0] sd_temp1;

shift_reg x1(oldest_data, counter_n, newData_flagl, CLK, RESET, TN);

//Processes running every clock cycle
always @(posedge CLK, posedge RESET)
begin

if (RESET) begin mode_delay
<=0; mode_delay2<=0; end
else begin mode_delay <=
MODE; mode_delay2 <=
mode_delay; end

end

//Processes that need to run every time there is a new input (1st cycle)
//ie. sum(Tl), TI*2, ODA2 always @(posedge

newData_clkl, posedge RESET) begin

if (RESET) begin
sum <=0;

Ti sq<=0; OD_sq<=0; end
else begin sum <=sum + TN -
oldest_data; Ti_sq<=
multl_w3; OD_sq<=
mult2_w3; end

end

//Processes that need to run every time there is a new input (2nd cycle)
//ie. sum_sq always @(posedge newData_clk2, posedge
RESET) begin
if (RESET)
sum_sq <= 0;
else
sum_sq <=sum_sq+Ti_sq - OD_sq;

end

//MOVING AVERAGE

assign t_avg = (sum+(counter_n>>1))/counter_n;

//STANDARD DEVIATION //2nd Cycle
always @(posedge sd_clk2, posedge
RESET) begin

if (RESET) begin
sum_2<=0; sd n<=

0; end else begin

sum_2 <= multl_ws3;
sd_n <=mult2_ws3;
end

end

//3rd Cycle always @(posedge sd_clk3,
posedge RESET) begin

if (RESET) begin
sd_n_sq<=0;

sum_sg_n<=0; end

else begin sd_n_sq <=
multl_w3; sum_sq_n<=
mult2_w3; end

end

//4th Cycle always @(posedge sd_clk4,
posedge RESET) begin
if (RESET) begin
sd_templ <=1024; end
else begin sd_templ
<=sd_result; end
end
//Final Result assign sd_result = (sd_n_sq + sum_sq_n - sum_2 +

sd_n)/(sd_n<<1);

//Mupltipier Select Logic always @(posedge

mult_clk, posedge RESET) begin

if (RESET) begin
mult_sel <=0; end
else begin
if (mult_sel == 2)
mult_sel <=0;
else

mult_sel <= mult_sel + 1;

end

end

assign mult_clk = newData_clk1 | newData_clk2 | newData_clk3;

always @(posedge DONE, posedge RESET) begin
if (RESET)
AVG_SD <= 0;
else
AVG_SD <=div_result;
end
//Delay new input flag always
@(negedge CLK, posedge RESET) begin
if (RESET) begin newData_flag2
<=0; newData_flag3<=0;
newData_flagd <=0; end else
begin newData_flag2 <=

newData flagl; newData_flag3

<= newData_flag2;
newData_flag4 <= newData_flag3;
end

end

//DONE and SAMPLE logic assign
DONE =t_avg_clk2 | sd_clk4;

assign SAMPLE = newData_clk1;

//Multiplier 1 logic

assign multl_w1 = (mult_sel ==0) ? TN : ((mult_sel == 1) ? sum : ((mult_sel == 2) ? sd_temp1:
0)); assign multl_w2 = (mult_sel ==0) ? TN : ((mult_sel == 1) ? sum : ((mult_sel ==2) ? sd_n:

0));

assign multl_w3 = multl_w1l * multl_w2;

//Multiplier 2 logic

assign mult2_w1 = (mult_sel == 0) ? oldest_data : ((mult_sel == 1) ? sd_temp1 : ((mult_sel == 2)
? counter_n: 0));

assign mult2_w2 = (mult_sel == 0) ? oldest_data : ((mult_sel == 1) ? mult3_w3 : ((mult_sel ==
2)
? sum_sq: 0));

assign mult2_w3 = mult2_w1 * mult2_w2;

//Multiplier 3 logic

assign mult3_w3 = counter_n * counter_n;

//Division Logic assign div_w1 = mode_delay ? (sd_n_sq + sum_sq_n -sum_2 +sd_n) :
(sum+(counter_n>>1)); assign div_w2 = mode_delay ? (sd_n<<1) : counter_n; assign

div_result = div_w1/div_w2;

//create clock at every new process delayed by a cycle each assign
newData_clkl = CLK & newData_flagl; //At cycle 1 of new data
assign newData_clk2 = CLK & newData_flag2; //At cycle 2 of new
data assign newData_clk3 = CLK & newData_flag3; //At cycle 3 of
new data assign newData_clk4 = CLK & newData_flag4; //At cycle 3

of new data

//clock-gating clock for MOVING AVERAGE. n cycle delay after new input to process

assign t_avg_clk2 = newData_clk2 & “MODE; //at cycle 2

//clock-gating clock for STANDARD DEVIATION. n cycle delay after new input to
process assign sd_clkl = newData_clkl & MODE; //at cycle 1 assign sd_clk2 =
newData_clk2 & MODE; //at cycle 2 assign sd_clk3 = newData_clk3 & MODE; //at

cycle 3 assign sd_clk4 = newData_clk4 & mode_delay2; //at cycle 4

endmodule

// This is linear queue / FIFO

// The queue length 14 // The
data width is also 12 bits
module shift_reg(output [11:0]

DATAOUT, output reg [3:0]

counter_n, output reg
newData_flagl,

input clock,

input reset,

input [11:0] DATAIN);

wire newData_clkl; reg[11:0] memory [13:0]; // the stack is 12 bit wide

and 14 locations in size

integer i;

always @(posedge newData_clk1, posedge reset)
begin
if (reset)
begin
for(i=0;i<14;i=i+1)begin
memoryli] <=0;
end
counter_n<=0;
end
else
begin
memory[0] <= DATAIN;
for(i=0;i<13;i=i+1)begin
memory[i + 1] <= memory [i];
end

if (counter_n < 14)

counter_n <= counter_n +1;
end

end

always @(negedge clock, posedge reset)
begin
if (reset) begin

newData_flagl <=0;
end else begin

if (memory[0] == DATAIN)

newData_flagl <=0;
else
newData_flagl <= 1;

end

end

assign newData_clkl = clock & newData_flagl;

assign DATAOUT = memory[13];

endmodule

5. Test results

Wave ST

fe Edit View Add Format Tools Bookmarks Window Help

wri
VSil

2]

Vsl
VSil

t R

[t B

0Ons102100ns fb_NOAA/expactedOutput s

This is the simulation with initial code with failing test scenarios due to rounding errors and
mismatch between cycle for different outputs

Test benches and results

Below shows the successful running of our design with provided test-benches.

4 Applications Places Transcript Mon 22148 % € Q

File Edit View Add Format Tools Bookmarks Window Help
pal Wave - Default ELE!
-5@08 LRBOC 08T SZEQW Stes MoweldUNEC RUUY

RE R 1 2 1

Jeo oo B Seanch v EGEHE GqaBsin LINE

AL L

Transcript - o x

File Edt View Boomaks Window Help

VSIN 100>

|]

Onsto 6033 ns

Using the 100 values, final simulation run

Fie Edt View
m Wave - Detaun
W % mw | [5F 10000 ne % EL B E) B

LTI ES
3o #6- B | Seacn ETIY a8 0

Transcript o O o

e Edt View Bookmarcs Window pelp

L LA D] e

d time: 22:12:51 on Dec 03,2022, Elapaed time: 0:00200
: 0, Warnings: 0

VSIM 90> vain work. th_NOE

End tine: 22:

. Elopsed time: 0:04

RA_Module
k.ahifE_reg
-pasition end
-pasition end
-position end
aaition

—position end
vave -pasition end
VSIM 58> run
"

VS 100>|

carsor 14455 v

Onsto813ns
Zoomed screenshot of the above run.

Fie Edii Wew Add Formai Tools Bookmarks Window Help

al Wave - Dfauit k]
B8 R Jdd @ 5% [1000 oz 5! ([(3 (S (9§

*+a ot

LY TSt

& Mb_NOARESET

¥ M_NOAAMODE 1a1
= Mo NDAATN 12945
¥ M NOAASAMPLE 100

& M_NOAADONE
= Mb_NDANAVG_SD
& iy_NOANexpEcted DUt

Transcript

Ele Edil View Boogmarks Wndow Help

0, Warnings: 0
mim work.th NOAR

VSIM 111> |

Using the 30 value data.

I Yew Add Fgmai Tools Bosgmarks MWindow Help

H-sgd & 280> AT ST QW St e | 5F] 0000e 5 (5 [0S R

L-- 2 R-3
LR TRy -

&L

& th_NOAARESET Ta0
& t_NOAAMODE Td1

3 b Mb_NOAATN 12045
& M_NOANSAMPLE 100
& M NOAADONE 100

9 b NORAAVG SD 1zar7a

< 1 NORAGxpaciedOulpul

s 1111

Zoomed version of above simulation.

6. Conclusions and Discussion

The learning experience of solving a real world problem using the techniques we learned in the
class and lab was an eye opener. The hardest part of the project was verilog coding and
optimizing our code to obtain required results(basically incorporating division towards the end
in the code). Suggestions would be to use better tools like Cadence NCSIM and Synopsys Verdi
for simulation part(or even Xilinx Vivado is better than ModelSim) and different project
descriptions should be given to different groups to enhance creativity.

