
 CPRE 465 FINAL PROJECT

 Harith Mohd., Akash Pradhan, Joyal Babu

Akash Pradhan – Streamlining synthesis process

M. Harith Arsyad – Verilog Code, Optimizations, and Synthesis

Joyal Babu – Report writing

5th December 2022

1. Problem Description

The problem that the USDA is facing is that they want to investigate the relationship between

the temperature of a plant and the protein level present in the plant. In order to do this, they

need to monitor the temperature of the plants remotely, using temperature sensors and IoT

motes. Our task is to design a circuit that can solve this problem for the USDA, allowing them to

monitor the temperature of the plants and investigate the relationship between temperature

and protein levels. This will require a combination of digital circuit design and algorithm design

in order to implement a solution that meets the USDA's requirements. We will

1. Start by using an IoT mote to collect temperature readings from the temperature

sensor. The mote should be able to communicate with the temperature sensor and

collect the readings at regular intervals.

2. Next, design a circuit that can receive the temperature readings from the mote and

store them in a memory device, such as a shift register or a FIFO buffer. The circuit

should be able to store a large number of readings, so that we can calculate the average

and standard deviation over a long period of time.

3. Once the readings are stored in the memory device, we can use a digital circuit to

calculate the average and standard deviation of the readings. This can be done by

implementing a simple algorithm that adds up all the readings and divides the result by

the number of readings to calculate the average. The standard deviation can be

calculated by taking the square root of the sum of the squared differences between

each reading and the average, divided by the number of readings.

4. Finally, the circuit should be able to display the average and standard deviation of the

temperature readings on a display device, such as an LCD screen. This will allow the

USDA to monitor the temperature of the plants and investigate the relationship

between temperature and protein levels.

In detail regarding the design of the digital circuit the objective is to find the moving average

and the moving standard deviation of the last fourteen readings from a temperature sensor.

Moving average is a calculation to analyze the data points by creating a series of averages of

different subsets of the full data set. Here we are taking the temperature value the sensor gives

as the average temperatures the sensor detects and we are calculating the average

temperature of the last 14 inputs from the temperature sensor. The temperature average is

given by

n

T avg n−1 i=1 Ti

The standard deviation can be written as

T

avg2

hence since we want the moving average for the last 14 temperature readings if n,14 we take

the average and standard deviation of all n readings.

The design specification given are

When RESET is set to 1 all previous temperature readings are forgotten. The temperatures are

taken one at a time and the circuit takes in new temperature when the SAMPLE is set to 1. The

circuit then takes in one new temperature reading TN and the mode of operation MODE at the

next clock edge. The next few clock cycles are used to calculate the moving average and the

moving standard deviation. After the that the circuit will change DONE to 1 and output will be

given which can the moving average(if MODE =0) or the moving standard deviation (if MODE

=1) given as AVG/SD.

Square root is not easy to be implemented via hardware hence we use the Babylonian method.

2. Brief Description of Team Approach to this Problem
In this project we needed to preserve previous values of temperatures and their running

averages. We started with a big memory of registers for storing input temperatures and used

accumulator for calculating the sum of temperatures and square of temperatures. These used

a lot of adders and multipliers. Then we did division to get the averages and square root

using the Netwon-Raphson approximation method. This gave us uneven number of cycles for

calculation of running averages and standard deviation. The problem was that we were doing

multiple things in sequential manner without maintaining proper cycle accuracy and that is

when we changed our design. Next we started with scratch design on paper and made a flow

diagram where we found what could be optimized in the process to calculate the required

things. We were able to save on multiplication and division hardware by proper insertion of

buffers and using the techniques learned in previous labs. We had the following diagrams in

our rough sketches which shows our design

3. Detailed description of the design

Design Styles Used :

We used modular design and saved on hardware by pipelining the processing at different

stages.

How the Design Works:

The design starts with saving the incoming temperature readings in memory buffer.

Simultaneously it calculates the running sum of last 14 or less readings and their average using

the divider hardware. There is another accumulator which sums the squares of incoming

temperature readings. Then there are some intermediate values stored and processed for ease

of calculation of running standard deviation. Then the output is generated based on input

mode. The special feature of our designing was we tried various ways to design the required

functionality like FSM, FIFO for buffering readings, and pipe-lined processing. In the end the

design with the simplest approach and clear understanding was finalized and used.

Schematics and layouts after optimization :

Timing, Area and Power Reports (by RTL Compiler and

Innovus)

4. Verilog Codes of design
This is the final code after optimization:

module NOAA_Module (

input CLK,

input RESET,

input MODE,

input [11:0] TN,

output SAMPLE, output

DONE, output reg [11:0]

AVG_SD);

Before Optimization After Optimization

Clock Period(ns) 4.2 4.2

 -3.923

Area(m

Average power
consumption(mW)

12.761 2.372

Before optimization After optimization

Clock period(ns) 4.2 4.2

 -3.923
Area(m

Average power
consumption(mW)

4.30942

Average Energy consumption
per temperature reading(W)

Latency

Throughput One every 8.12ns,

 , one every 2.1 ns

//Flag wires and regs

wire newData_flag1; //flags for every new data into the process. Waits for the process to be

done first then flags for the next set to be processed

reg newData_flag2, newData_flag3, newData_flag4; //registers to delay newData flag to 2, 3, ...

cycles

//Clock Components

wire newData_clk1, newData_clk2, newData_clk3; //clocks for every new input to the process.

Each clock line adds 1 cycle delay after every new input wire t_avg_clk2; //clock-gating clock

for MOVING AVERAGE. 2 cycles after new input to process

wire sd_clk1, sd_clk2, sd_clk3, sd_clk4; //clock-gating clock for STANDARD DEVIATION. 1, 2, 3,

... cycle delay wire mult_clk;

//Multiplier Wires and select wire [31:0]

mult1_w1, mult1_w2; wire [31:0]

mult2_w1, mult2_w2; wire [39:0]

mult1_w3, mult2_w3, mult3_w3;

reg [1:0] mult_sel;

//Division Wires wire [31:0]

div_w1, div_w2; wire

[31:0] div_result;

//Continuos Process Components

reg [15:0] sum; reg [31:0]

sum_sq; reg [31:0] Ti_sq; reg

[31:0] OD_sq; wire [11:0]

oldest_data; reg mode_delay,

mode_delay2; wire [3:0]

counter_n;

//MOVING AVERAGE Components

wire [11:0] t_avg;

//STANDARD DEVIATION Components

reg [31:0] sd_n_sq, sd_n, sum_2;

reg [39:0] sum_sq_n; wire [15:0]

sd_result;

reg [15:0] sd_temp1;

shift_reg x1(oldest_data, counter_n, newData_flag1, CLK, RESET, TN);

//Processes running every clock cycle

always @(posedge CLK, posedge RESET)

begin

 if (RESET) begin mode_delay

<= 0; mode_delay2 <= 0; end

else begin mode_delay <=

MODE; mode_delay2 <=

mode_delay; end

end

//Processes that need to run every time there is a new input (1st cycle)

//ie. sum(TI), TI^2, OD^2 always @(posedge

newData_clk1, posedge RESET) begin

 if (RESET) begin

sum <= 0;

 Ti_sq <= 0; OD_sq <= 0; end

else begin sum <= sum + TN -

oldest_data; Ti_sq <=

mult1_w3; OD_sq <=

mult2_w3; end

end

//Processes that need to run every time there is a new input (2nd cycle)

//ie. sum_sq always @(posedge newData_clk2, posedge

RESET) begin

 if (RESET)

sum_sq <= 0;

 else

 sum_sq <= sum_sq + Ti_sq - OD_sq;

end

//MOVING AVERAGE

assign t_avg = (sum+(counter_n>>1))/counter_n;

//STANDARD DEVIATION //2nd Cycle

always @(posedge sd_clk2, posedge

RESET) begin

 if (RESET) begin

sum_2 <= 0; sd_n <=

0; end else begin

sum_2 <= mult1_w3;

sd_n <= mult2_w3;

end

end

//3rd Cycle always @(posedge sd_clk3,

posedge RESET) begin

 if (RESET) begin

sd_n_sq <= 0;

 sum_sq_n <= 0; end

else begin sd_n_sq <=

mult1_w3; sum_sq_n <=

mult2_w3; end

end

//4th Cycle always @(posedge sd_clk4,

posedge RESET) begin

 if (RESET) begin

sd_temp1 <= 1024; end

else begin sd_temp1

<= sd_result; end

end

//Final Result assign sd_result = (sd_n_sq + sum_sq_n - sum_2 +

sd_n)/(sd_n<<1);

//Mupltipier Select Logic always @(posedge

mult_clk, posedge RESET) begin

 if (RESET) begin

mult_sel <= 0; end

else begin

 if (mult_sel == 2)

mult_sel <= 0;

 else

 mult_sel <= mult_sel + 1;

 end

end

assign mult_clk = newData_clk1 | newData_clk2 | newData_clk3;

always @(posedge DONE, posedge RESET) begin

 if (RESET)

AVG_SD <= 0;

 else

 AVG_SD <= div_result;

end

//Delay new input flag always

@(negedge CLK, posedge RESET) begin

 if (RESET) begin newData_flag2

<= 0; newData_flag3 <= 0;

newData_flag4 <= 0; end else

begin newData_flag2 <=

newData_flag1; newData_flag3

<= newData_flag2;

newData_flag4 <= newData_flag3;

end

end

//DONE and SAMPLE logic assign

DONE = t_avg_clk2 | sd_clk4;

assign SAMPLE = newData_clk1;

//Multiplier 1 logic

assign mult1_w1 = (mult_sel == 0) ? TN : ((mult_sel == 1) ? sum : ((mult_sel == 2) ? sd_temp1 :

0)); assign mult1_w2 = (mult_sel == 0) ? TN : ((mult_sel == 1) ? sum : ((mult_sel == 2) ? sd_n :

0));

assign mult1_w3 = mult1_w1 * mult1_w2;

//Multiplier 2 logic

assign mult2_w1 = (mult_sel == 0) ? oldest_data : ((mult_sel == 1) ? sd_temp1 : ((mult_sel == 2)

? counter_n : 0));

assign mult2_w2 = (mult_sel == 0) ? oldest_data : ((mult_sel == 1) ? mult3_w3 : ((mult_sel ==

2)

? sum_sq : 0));

assign mult2_w3 = mult2_w1 * mult2_w2;

//Multiplier 3 logic

assign mult3_w3 = counter_n * counter_n;

//Division Logic assign div_w1 = mode_delay ? (sd_n_sq + sum_sq_n - sum_2 + sd_n) :

(sum+(counter_n>>1)); assign div_w2 = mode_delay ? (sd_n<<1) : counter_n; assign

div_result = div_w1/div_w2;

//create clock at every new process delayed by a cycle each assign

newData_clk1 = CLK & newData_flag1; //At cycle 1 of new data

assign newData_clk2 = CLK & newData_flag2; //At cycle 2 of new

data assign newData_clk3 = CLK & newData_flag3; //At cycle 3 of

new data assign newData_clk4 = CLK & newData_flag4; //At cycle 3

of new data

//clock-gating clock for MOVING AVERAGE. n cycle delay after new input to process

assign t_avg_clk2 = newData_clk2 & ~MODE; //at cycle 2

//clock-gating clock for STANDARD DEVIATION. n cycle delay after new input to

process assign sd_clk1 = newData_clk1 & MODE; //at cycle 1 assign sd_clk2 =

newData_clk2 & MODE; //at cycle 2 assign sd_clk3 = newData_clk3 & MODE; //at

cycle 3 assign sd_clk4 = newData_clk4 & mode_delay2; //at cycle 4

endmodule

// This is linear queue / FIFO

// The queue length 14 // The

data width is also 12 bits

module shift_reg(output [11:0]

DATAOUT, output reg [3:0]

counter_n, output reg

newData_flag1,

input clock,

input reset,

input [11:0] DATAIN);

 wire newData_clk1; reg [11:0] memory [13:0]; // the stack is 12 bit wide

and 14 locations in size

 integer i;

 always @(posedge newData_clk1, posedge reset)

 begin

 if (reset)

begin

 for (i = 0; i < 14; i = i + 1) begin

memory[i] <= 0;

end

counter_n <= 0;

 end

else

begin

 memory[0] <= DATAIN;

 for (i = 0; i < 13; i = i + 1) begin

memory[i + 1] <= memory [i];

end

if (counter_n < 14)

 counter_n <= counter_n + 1;

 end

 end

always @(negedge clock, posedge reset)

begin

 if (reset) begin

 newData_flag1 <= 0;

end else begin

 if (memory[0] == DATAIN)

newData_flag1 <= 0;

 else

 newData_flag1 <= 1;

end

end

assign newData_clk1 = clock & newData_flag1;

assign DATAOUT = memory[13];

endmodule

5. Test results

This is the simulation with initial code with failing test scenarios due to rounding errors and

mismatch between cycle for different outputs

Test benches and results

Below shows the successful running of our design with provided test-benches.

Using the 100 values, final simulation run

Zoomed screenshot of the above run.

Using the 30 value data.

Zoomed version of above simulation.

6. Conclusions and Discussion
The learning experience of solving a real world problem using the techniques we learned in the

class and lab was an eye opener. The hardest part of the project was verilog coding and

optimizing our code to obtain required results(basically incorporating division towards the end

in the code). Suggestions would be to use better tools like Cadence NCSIM and Synopsys Verdi

for simulation part(or even Xilinx Vivado is better than ModelSim) and different project

descriptions should be given to different groups to enhance creativity.

